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ABSTRACT
Social insect societies consist of individuals with simple be-
havior, yet at the collective level the societies are capable
of solving complex tasks. These tasks span a wide range,
including clustering, patch sorting, and annular sorting. It
has proved particularly difficult to recreate the social in-
sects ability to perform annular sorting, even for engineered
solutions. In this paper we present the results we have ob-
tained from evolving swarms of agents that are capable of
performing clustering, patch sorting, and annular sorting.
Most noteworthy is our solution to the 3-type annular sort-
ing problem which has previously not been solved success-
fully.

Categories and Subject Descriptors: I.2.m [Miscella-
neous]

General Terms: Experimentation

Keywords: Annular sorting, ant, clustering, genetic algo-
rithm, neural network, sorting, swarm intelligence

1. INTRODUCTION
In social insects complex collective behavior emerges from

the interactions of individuals that each performs simple be-
haviors. The collective behaviors span a wide range of tasks
from foraging and nest construction to thermoregulation and
brood sorting [3, 4]. Cemetery formation and brood sort-
ing are two prominent examples of insects collective behav-
ior. Cemetery formation has been observed in different ant
species such as Pheidole pallidula, Lasius niger and Messor
sancta [3, 5]. When ants die they are carried out of the nest
by workers and deposited in piles outside the nest. The un-
derlying mechanism for this clustering behavior appears to
be an attraction between dead bodies mediated by the work-
ers carrying the bodies. Small clusters of bodies attract the
workers to deposit bodies, and through this positive feed-
back mechanism the clusters increase in size. Brood sorting
has been observed in the ant Leptothorax unifasciatus [5, 6].
Deneubourg et al. [5] describes this behavior: “. . . the eggs
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are arranged in a pile next to a pile of larvae and a further
pile of cocoons, or else the three categories are placed in
entirely different parts of the nest”. The sorting of brood
in the Leptothorax ant when moving to a new nest site has
later been studied by Franks and Sendova-Franks [6]. Their
studies show that the brood items are arranged in concentric
annuli: “The standard pattern is for eggs and micro-larvae
to be in the middle, with the larger larvae further from the
center in order of increasing size. Pre-pupae and pupae are
distributed in positions between the outer ring of the largest
larvae and those of the next largest size” [6].
The collective behaviors of social insects have inspired

computer scientists to perform both computer simulations
and robotic experiments that attempt to replicate this be-
havior. There are two main reasons for this. The first is that
the underlying mechanisms responsible for the behaviors are
yet unknown. By replicating the behavior of the insects the
underlying mechanisms may be found, and a better under-
standing of nature may follow. The other reason is that the
behavior of social insects has many attractive features such
as robustness and reliability through redundancy. Applica-
tion of social insect behavior to computer science may thus
lead to better techniques. Computer models based on the
clustering and sorting of insects can lead to better perfor-
mance in areas such as search, data mining, and experimen-
tal data analysis. An annular sort applied to the results of
a search may for example aid in the presentation of the re-
sults by organizing them in concentric rings with the most
relevant results closer to the center of the structure.

2. RELATED WORK
The clustering of dead bodies by ants inspired Deneubourg

et al. [5] in their seminal article on clustering by a group of
homogeneous agents. Their model contains ants that move
about randomly, and is based on the principle that when
ants discover an object, the probability of picking up the
object is higher if the object is isolated. In a similar man-
ner, the probability of dropping an object is higher if the
ant is in an area containing many other objects. The ba-
sis of the model is thus two probabilities, one for picking
up objects, and the other for dropping objects. The work
performed by Deneubourg et al. [5] has inspired most of
the later research in computer and robotic implementations
of swarms of agents that perform clustering or sorting. A
robotic implementation of clustering has been done by Beck-
ers, Holland and Deneubourg [2]. In their experiment they
use simple robots that do not have memory, can only decide
if they are moving more than a specified number of objects,
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and that can only sense the local density of objects as be-
ing above or below a fixed threshold. The robots only have
three different behaviors, with only one being active at any
one time. Using these minimally equipped robots Beckers
et al. [2] are capable of displaying clustering behavior by the
robots.
Deneubourg et al. [5] also presents an extension of their

clustering mechanism that sorts two different types of ob-
jects. The basis of this mechanism is also differences in
probabilities between the picking up and dropping of ob-
jects. Objects that are isolated or located in an area with a
high density of the other object type have a higher proba-
bility of being picked up. Likewise, the probability of drop-
ping an object is higher if the ant is in an area with a high
density of the same type of object. Lumer and Faieta [9]
have generalized Deneubourg et al’s [5] model to apply it
to exploratory data analysis. In contrary to Deneubourg et
al’s [5] model, Lumer and Faieta [9] use a continuous similar-
ity function to judge the similarity between different objects.
They have also left the idea of having a homogenous popu-
lation of agents. Sorting of objects has also been performed
in robotic experiments [8, 10, 11]. In their work, Melhuish
et al. [10] showed that it is possible to sort two types of ob-
jects using minimally equipped robots with a small rule set.
The robots have a U-shaped gripper that allows the robot
to push a single Frisbee. If the robot is pushing a Fris-
bee and collides with another Frisbee, the pushed Frisbee is
deposited and the robot reverses. A simple two object segre-
gation is achieved by varying the distances the two different
Frisbee types are pulled back before being released. This
enables the robots to perform a simple two-object sort. The
pullback algorithm has later been extended by Melhuish et
al. [11] to allow for sorting of more than two types of objects.
The most complex sorting behavior performed by social

insects is annular sorting, ie. sorting into a target-like struc-
ture of concentric multi-type rings. Wilson et al. [14] have
attempted to simulate this annular sorting behavior of the
Leptothorax ant using minimalist robots. In their work they
test if three different mechanisms are capable of forming an
annular structure from different Frisbees. The first mecha-
nism is investigated in a computer simulation and “. . . relies
on object size and segregation combined with a simple clus-
tering algorithm” [14]. The robots push objects, and when
they hit an object while pushing another object, they will
reverse and thereby leave the previously pushed object next
to the other object. In their next experiment they achieve
segregation of equally sized objects by varying the pullback
distances before dropping the different objects. When the
robots hit an object, they will pull the currently pushed ob-
ject backwards for a specified distance depending on the type
of the object, before dropping it. In their last experiment
they introduce the concept of a ‘combined leaky integrator’
to adapt the pullback distances of the different types of ob-
jects.
The limited amount of work that has been done attempt-

ing to recreate the annular sorting performed by ants is an
indication of how difficult the problem is. According to Hol-
land and Melhuish [8], previous to their work there did not
appear to be any accounts of sorting analogous to brood
sorting being carried out by physical robots. Work on com-
puter simulations of brood sorting have also been very lim-
ited to this date. Another indication of the difficulty of
annular sorting is that the underlying mechanism is still

unknown [13]. Despite this, there have been varying sugges-
tions as to what may cause the annular structure in brood
sorting. One is the muesli effect [1] which is self-sorting ac-
cording to size where small particles percolate to the bottom
of the packet. In brood sorting the smaller particles could
move between the larger brood and thus form a cluster in
the center of the structure. Another suggestion is mecha-
nisms based on differential adhesion, and Wilson et al. [14]
have showed that this can be done with two types of ob-
jects. However, brood sorting in Leptothorax ants include
five types of objects and Sendova-Franks [13] have there-
fore found it unlikely for models based on differential adhe-
sion to be satisfactory. Franks and Sendova-Franks [6] sug-
gest that deliberate spacing using pheromones or metabolic
waste products may be the underlying mechanism, or the
conditional probabilities used by Deneubourg et al. [5] com-
bined with packing rules. Sendova-Franks et al. [13] have re-
cently discovered that the brood sorting by Leptothorax has
two distinct phases of the direction of brood movement. In
the first phase the brood items are moved in a direction away
from the nest entrance, and this phase constitutes a cluster-
ing phase. In the second phase the ants move the brood
in a random direction and in this phase larger brood items
diffuse outwards more quickly than lighter brood items.

3. METHOD
This study looks into the behavior of swarms of homoge-

neous agents called ants that are capable of clustering and
sorting objects. These swarms of ants reside in an envi-
ronment consisting of objects that may be picked up and
carried. The environment is a toroidal grid with periodic
boundary conditions. Ants that step out of the environ-
ment on one side will enter the environment on the opposite
side. A grid in the environment may either contain one ant,
one object, or both one ant and one object. An environment
therefore consists of two parts. The first is a collection of ob-
jects that in the beginning are randomly dispersed through-
out the environment, and as time goes by are moved by ants
so that they form certain patterns. The second component
of the environment is a swarm of ants that move around
and pick up and deposit the objects. The environment has
discrete time steps, and for each time unit all the ants are
run in a random order. An important characteristic of the
environment is the relationship between the size of the envi-
ronment, the number of objects, and the number of ants in
the environment. As suggested in previous work [7, 12] the
number of objects can be used to decide the size of the world
and the number of ants to be used. Ramos and Merelo [12]
suggest that the number of ants, na, divided by the number
of objects, no, should equal 0.1. When it comes to the size
of the world we follow Handl et al’s [7] approach. They sug-
gest that the length of each side in a square world should be√
10× no.
The ants in the swarm are all identical, and they may

perform three types of basic behavior: 1) pick up an object,
2) drop an object, and 3) move. An ant may carry only
one object at a time. If an ant is not currently carrying
an object it may attempt to pick up an object. The ant
can only pick up an object that is located in the same grid
in the environment as the ant itself. The second type of
behavior that the ant may perform is dropping objects. If
the ant is carrying an object, then it may drop this object
at its current location if this does not already contain an
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Figure 1: Mapping from an ant’s neighborhood to its neural controller.

object. The third and final behavior is movement. The ant
has eight neighboring cells, and it may move to any one
of these. However, an ant cannot move to a cell already
occupied by another ant although it can move over objects.
Whether an ant should attempt to drop or pick up an

item, as well as the type of movement it should perform is
decided by a neural network controller. This network is a
simple feed forward network with one hidden layer. The
ant perceives the objects that are located in its eight neigh-
boring cells, as well as the object it is currently carrying.
These nine perceptions are the input to the network’s nine
groups of input nodes. The mapping from the ant’s neigh-
borhood to the input groups of the network is shown in
Figure 1, where the input to group A is the object being
carried by the ant. The input groups of the network con-
tain one node for each object type in the environment, and
only one node in each group may fire at any one time. To
simulate the non-determinism of real-life behavior, noise is
added to the perceptual input. In one percent of the per-
ceptions the actual perception is randomly replaced by one
of the other possible perceptions. The network has six out-
puts that control the behavior of the individual ants. The
first two outputs (P and D) decide whether the ant should
attempt to pick up or drop an object. The next two out-
puts (F and B) specify if the ant should move forwards or
backwards, and they may cancel each other out. Each ant
has a direction with eight possible values, and the last two
outputs (L and R) specify whether this direction should be
shifted left or right. The ants do however have one impor-
tant simplification in that they are unable to perceive each
other. This means that they may end up in deadlocks by
wanting to move to another ant’s current location. To avoid
this, an ant that remains in the same position for ten con-
secutive steps is moved to a random unoccupied position in
the environment.
As described above an environment contains objects and

a swarm of ants. An environment is equal to an individ-
ual in the evolutionary context. In the evolutionary run
there is a generation of environments that each are run for
a specified number of steps. When all the environments in
the generation are completed, they are evaluated, and the
next generation of environments is created. The phenotype
of the environment is the positions of the objects, exclud-
ing objects that are currently carried by ants, after this has
gone through the specified number of steps. The positions
of the objects are used by the fitness function to evaluate
the solution. The genotype of the environment is an array
of real-valued numbers that define the weights in the neural
network controller of the ants in the environment.

Many of the parameters are identical for all the experi-
ments. All experiments have a population size of 50 that
each run for 4000 steps, and the evolutionary run is 6000
generations long. The individuals each contain 60 or 50 ob-
jects, and this decides the number of ants and the size of the
world. If there are 60 objects there are six ants in a 25× 25
grid world, and if there are 50 objects there are 5 ants in a
23× 23 grid world. Single point crossover is employed, and
it can only happen between weights that belong to different
nodes, that is, in crossover all weights applied to the inputs
of the same node are transfered to the next individual. The
crossover and mutation rates are constant for all the exper-
iments with the crossover rate being 0.7 and the mutation
rate 0.05. Tournament selection in combination with eliti-
sism is used as selection mechanism, and each trial contains
5 individuals. The chance of choosing the best individual
is 0.75, and if this is not chosen, a random individual from
the trial is chosen for reproduction. The 5 best individu-
als from each generation are copied into the next generation
only subject to mutation.

4. EXPERIMENTS AND ANALYSIS
We have performed four experiments with different levels

of complexity. The simplest one is what Melhuish et al. [10]
term clustering. This is the task of grouping objects of the
same type in a continuous area. The next task is to per-
form patch sorting [10]. This involves two or more classes
of objects that are individually clustered, while the clus-
ters of each class are separated from each other. The last
two experiments are considered to be of a higher complex-
ity. These tasks are annular sorting of two and three classes
of objects. Melhuish et al. [10] defines annular sorting as
“forming a cluster of one class of objects, and surrounding
it with annular bands of the other classes, each band con-
taining objects of only one type”. Thus the two tasks are
to form a central cluster surrounded by a single band of
another class of objects, and forming a central cluster sur-
rounded by two bands of two other types of objects, each
band containing only objects from the same class.

4.1 Clustering
The first experiment attempts to solve the problem of

clustering identical objects. Here all the objects must be
grouped together such that they occupy a continuous area.
This is equivalent to cemetery formation in ants. To solve
this problem we have created a local fitness function based
on the idea that each object should be surrounded by as
many other objects as possible. The fitness function is given
in Equation 1. In the equation, no is the number of objects
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Figure 2: A single cluster is formed after 5840 steps.

in the world and oi is an object. The function c(oi) returns
the number of objects that are located in object oi’s eight
cell neighborhood.

no∑
i=1

c(oi) (1)

To control the individual ants a feed forward network with
three hidden nodes is used. The number of hidden nodes
was determined experimentally, and it is one hidden node
more than there are sensory stimuli. That is, the ants may
sense an object or nothing. The individuals in the evolution
contain 50 objects and 5 ants.
After the evolution has run for 6000 generations, the av-

erage fitness of the generation is 293.32 with a standard
deviation of 52.44. The best individual has a fitness of 324
which is the maximum achievable fitness. As can be seen
in Figure 2, this individual creates a single cluster with a
perfect score in 5840 steps.
The clustering performed by the final solution appears to

be based on two specific features of the ants picking up and
deposition behaviors. First, the ants mostly pick up objects
that are located in sparsely populated environments, and
rarely remove objects that are part of larger, dense clusters.
Second, the ants usually deposit their objects only in densely
populated areas, although they may occasionally deposit an
object next to pairs of objects. These characteristics of the
ants’ picking up and deposition behaviors enable the final
solution to cluster a set of identical objects.
To evaluate the stability of the evolved solution, it was

run for 10000 steps on 50 different random configurations
containing 50 objects. Over these runs an average fitness of
319.44 with a standard deviation of 9.71 was achieved.

4.2 Three-Object Patch Sorting
The problem to be solved in this experiment is that of

patch sorting [10]. In this experiment there are three dif-
ferent types of object. A successful solution must therefore
create three different clusters that are separated, and that
each contains only one type of object. To solve this problem
we modified the fitness function used for simple clustering
(Equation 1). Since there are now different types of objects,
each object should not only be surrounded by as many ob-
jects of the same type as possible, but it should also have as
few objects of a different type in its neighborhood as possi-
ble. The fitness function used is given in Equation 2. In the

equation c(oi) is a function that returns the number of ob-
jects in object oi’s neighborhood, and s(oi, oj) is a discrete
similarity function that returns 1 if the objects are of the
same type, and -1 if they are of different types.

no∑
i=1

c(oi)∑
j=1

s(oi, oj) (2)

The feedforward network used as controller for the ants has
five hidden nodes. The reason for having four hidden nodes
is the same as for the clustering problem. There is one more
hidden node than there are sensory stimuli, which is three
different object types plus nothing. The individuals in the
evolution each contain 60 objects with 20 objects of each
type, and 6 ants.
After the evolution has run for 6000 generations, the aver-

age fitness of the final generation is 270.88 with a standard
deviation of 32.97. The best individual has a fitness of 314,
which corresponds to 94% of the maximum fitness. As can
be seen in Figure 3, the best individual is capable of forming
three separate clusters after 7970 steps.
When the final solution is run on a three-object patch

sort task, its ants quickly become loaded with mostly type 2
and 3 objects (empty circles and triangles in the figure). The
reason for the ants not carrying type 1 objects (filled circles)
is that these are deposited more easily in sparsely populated
areas than the other two types of objects, and when picked
up by the ants they are quickly deposited. Soon all the type
3 objects are part of groups, and one or two of these then
quickly increase in size as the other groups of the same type
are broken down. As this happens most of the type 2 objects
also begin to form small groups. One of these groups then
begins to grow, and at the same time the type 3 objects are
all grouped into one cluster. If there where initially only
one type 3 group that increased in size this will eventually
contain all the object of this type, but if it was two that
initially began to grow, one of these will increase in size
while the other is broken down. As all the type 3 objects
become part of one large cluster and one or two of the type
2 groups begin to grow, most of the type 1 objects are also
grouped into small groups. When this occurs the ants are
not loaded as much of the time as they were earlier in the
run of the individual. The run continues with the type 1
objects being collected in fewer, larger groups. At the same
time the type 2 objects are all collected in a single cluster.
Eventually all the type 1 objects also form a single cluster
and at this point the objects have been sorted successfully.
When evaluating the stability of the solution over 50 dif-

ferent configurations of 60 objects, running for 10000 steps
each, an average fitness of 279.68 with a standard deviation
of 16.4 is achieved.
The evolutionary progression leading to the final solution

evolves from solutions that cluster one type of object, to
a solution that clusters all three types into separate clus-
ters. At the beginning of the evolution only type 3 objects
are clustered. The type 2 objects occasionally form small,
fragile groups, while the type 1 objects remain randomly dis-
tributed in the world. The next evolved solution (generation
253) start by clustering the type 3 objects. When most of
the type 3 objects become part of the cluster the ants begin
to form groups of type 2 objects. These groups are however
very fragile and are continuously formed and broken down.
As with the first evolved solution, the last type of objects are
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Figure 3: The formation of three separate clusters.

hardly moved at all and they remain randomly dispersed in
the environment. After another 113 generations, the fittest
individual is capable of clustering type 2 and 3 objects into
one cluster of each type. However, the third type of objects
is still randomly distributed in the environment as they are
only carried one or two steps by the ants before being de-
posited. After a total of 3273 generations a solution that
also carries the type 1 objects for significant periods of time
is evolved. In this solution the ants first cluster the type
3 objects. As this cluster emerges the ants start forming
groups of type 2 objects. All but one of these groups are
after some time broken down, leading to the formation of a
cluster of type 2 objects in addition to the cluster of type
3 objects. Once most of the type 2 and 3 objects become
part of the two clusters the ants also begin clustering type
1 objects. These objects are however clustered into a loose
cluster that is only barely connected. When looking at the
evolving solution it is evident that the ants of the fittest indi-
viduals first learn to cluster type 3 objects. Then they learn
to cluster type 2 objects, and finally a solution is evolved
where the ants are capable of clustering all three types of
objects.

4.3 Two-Object Annular Sorting
The task in this experiment is to create an annular struc-

ture containing two types of objects. The structure will thus
consist of a central cluster of one object type surrounded by
a band of the other object type. To achieve this task we
have used a fitness function that is a modified version of
the metric used by Wilson et al. [14] to judge the quality
of annular structures. The fitness function consists of three
of the four components included in the metric. The first
component is the compactness metric. We have replaced
Wilson et al’s [14] compactness metric with a function us-
ing the equation given in Equation 1. This metric takes the
score obtained by Equation 1 and gives this as a fraction of
the maximum achievable score with no objects in the world,
m(n0).

C = 100×
∑no

i=1 c(oi)

m(no)
(3)

The second component is the separation component. This
component counts the number of objects that infringe on the
‘home zone’ of another object type. To do this the distance
to the center of the structure is measured for each object,

and the upper and lower quartiles are computed for each ob-
ject type. Then three different counts are performed. First,
the number of central type objects that have a distance to
the center greater than the lower quartile range of any other
type is counted, Nc. Second, the number of outermost ob-
jects that have a distance to the center lower than the up-
per quartile of any other type is counted, No. Third, for
intermediate type objects two types of objects are counted.
These are objects that have a distance to the center greater
than the lower quartile of any object type further from the
center, Ng

i , and objects that have a distance to the center
less than the upper quartile range of any object type closer
to the center, N l

i . These counts are then combined as shown
in Equation 4.

Se = 100×

1− Nc + No +

N
g
i +Nl

i

2

no


 (4)

The last component that we use is the shape component.
This is composed of two parts. The first is the fraction of
central type objects that are located in the center of the
annular structure, fc. The second part calculates the aver-
age Euclidean distance from the center of the structure for
each non-central type, oc, and sums up the deviations from
this distance for all the objects of the same type, dc. This
summed deviation is then normalized. Equation 5 shows
how the shape metric is computed, with m being the types
of different objects.

Sh =
100× fc +

∑m
c=2

[
100 ×

(
1− dc

oc

)]

m
(5)

Influenced by the work of Sendova-Franks et al. [13] which
found that the brood are first clustered and thereafter spread
out to form the annular structure, we have given the com-
pactness component twice the weight of the other two com-
ponents when they are added together (Equation 6).

F = 2× C + Se + Sh (6)

The feedforward network used to solve the task has four
hidden nodes. Each individual contains 50 objects with 25
objects of each type, and 5 ants.
The final generation of the evolution has an average fitness

of 362.48 with a standard deviation of 31.93. The best indi-
vidual has a fitness of 392.54, which is 98.14% of the max-
imum achievable fitness. As can be seen in Figure 4, this

221



Step 1300

0 5 10 15 20

0

5

10

15

20

Step 2000

0 5 10 15 20

0

5

10

15

20

Step 5080

0 5 10 15 20

0

5

10

15

20

Figure 4: An annular structure with a fitness of 392.90 is created after 5080 steps.

individual creates a two-object annular cluster after 5080
steps. This structure has a fitness of 392.90, with a score of
100 for the compactness component, 100 for the separation
component, and 92.90 for the shape component.
The cluster is created by the ants as follows. The ants

quickly become loaded with an object of either type, but
after a brief period the ants are only carrying central type
objects. The reason for this is that these objects are only
deposited in areas with a high density of central type objects,
and there are no such areas in the world at the beginning of
an annular sort. Ants that pick up central type objects thus
become stuck with their carried object, while ants that pick
up outermost type objects are able to deposit these again.
After some time there is a fluctuation in the world that
causes the formation of a small group of central type objects.
This group quickly increase in size, and once a central type
object become part of this group the ants rarely pick up
the object. This causes the ants to carry the outermost
type objects more of the time than previously in the run.
These outermost type objects are for the most part put down
along the edges of the central type cluster, but some are put
down next to other outermost type objects or in isolated
positions. However, the outermost type objects that are
positioned along the edges of the cluster are rarely picked
up by the ants. The ants mainly pick up the outermost type
objects that are scattered around the world in small groups
or in isolated positions and deposit these on the edge of the
cluster. This cluster eventually contains all the objects and
has an annular structure.
The solution that is evolved is quite stable, and when eval-

uating it on 50 different start configurations that each run
for 10000 steps an average fitness of 360.78 with a standard
deviation of 30.66 is achieved.

4.4 Three-Object Annular Sorting
The problem to be solved in this experiment is the same

as for the two-object annular sorting experiment, only this
time there are three types of objects. This means that there
will now be an intermediate band of objects between the
central cluster and the outermost band of objects. The fit-
ness function used to solve the task is the same as that used
for two-object annular sorting (Equation 6). The number of
hidden nodes in the feedforward network and the number of
ants and objects are the same as in the three-object patch
sort experiment. This means that there are 5 hidden nodes

in the network, 6 ants, and a total of 60 objects with 20
objects of each type.
After 6000 generations an average fitness of 309.00 with

a standard deviation of 48.96 is achieved. The best individ-
ual has a fitness of 378.38 which is 94.60% of the maximum
achievable fitness. Figure 5 shows how a three-object annu-
lar structure is formed in 14190 steps. This structure has a
total fitness of 382.70, with a score of 96.94 on the compact-
ness component, 96.55 on the separation component, and
92.27 on the shape component.
At the beginning of a run of the final solution, all of the

ants become quickly loaded with an object, and they soon
mostly carry central type objects. The reason for this is
that the central type objects are only deposited by the ants
in neighborhoods that are densely populated with identical
objects, and since there are no such neighborhoods at the
beginning of an annular sort the ants are unable to get rid
of these objects once they pick them up. After some time
one or two groups of central type objects begin to emerge.
When this happens the ants are not loaded as much of the
time as previously and they also begin to carry the other
two types of objects. This trend continues as a single clus-
ter of the central object type is formed. When all the central
type objects are located in the cluster, the ants begin to put
down intermediate type objects along the edges of the clus-
ter. The outermost objects are also moved to some extent
at this stage, but they are mostly put down in isolated lo-
cations. As more and more of the intermediate type objects
are located along the edges of the cluster the outermost ob-
jects are moved to a larger extent. Some of these objects are
still being put down in isolated locations, but the larger part
of the objects are put down along the edges of the cluster.
After some time all of the outermost objects are moved to
the edges of the cluster and at this time an annular structure
has been created.
The formation of an annular structure by the final solu-

tion can be summarized as follows. First the ants form a
stable cluster of central type objects. Then the ants move
intermediate type objects to the edges of the cluster, before
doing the same with the outermost objects. The center of
the created structure can perhaps be seen as creating an at-
tractive force as objects that become part of the structure
are not likely to be removed from the structure. However,
some objects are occasionally removed, and the attractive
force is thus not absolute. Instead, objects that become
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Figure 5: The creation of a three-object annular structure.
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Figure 6: Fitness during the evolution of a three-
object annular sort.

part of the structure are unlikely to be removed, and be-
cause of this the ants turn to moving the objects that are
not yet part of the structure.
When the last solution is tested for stability over 50 dif-

ferent start configurations, that each run for 10000 steps, an
average fitness of 329.23 with a standard deviation of 39.09
is achieved.
Figure 6 shows the average fitness of each generation as

well as the fitness of the best individual of each genera-
tion during the evolution. At the beginning of the evolution
(generation 31) the ants continuously form and break up a
central type cluster. The ants carry only the central type
objects and these are deposited in a single cluster. How-
ever, once this cluster is formed the ants begin to break
up the cluster and create a new cluster at another location.
After the evolution has continued for 13 more generations
the ants also move the intermediate type objects. At this
stage of the evolution the fittest individual of the generation
first creates two or three stable clusters of the central type
objects. After these clusters are formed the ants begin to

gather the intermediate type objects along the edges of the
already formed clusters. Some of the outermost objects are
also eventually moved to the edges of the cluster, but the
majority of these objects remain randomly scattered in the
environment. After a total of 240 generations the ants of the
fittest individual begin by carrying solely central type ob-
jects until a single stable cluster of these objects is formed.
Then the intermediate and some of the outermost type ob-
jects are moved to the edges of this cluster. The objects
that are not moved to the edges of the cluster are grouped
in small groups containing either one or both types of ob-
jects. As the sort continues most of the intermediate type
objects are positioned along the edges of the cluster, while
groups of outermost type objects are continuously formed
and broken down. Many intermediate and outermost type
objects are however also deposited by the ants in isolated
locations. When the evolution has run for 1420 generations
the ants are at the beginning of the sorting no longer carry-
ing solely the central type objects. The ants begin by form-
ing clusters of the central type objects with intermediate
type objects along their edges. In addition to these clusters,
groups of intermediate type and outermost type objects are
also formed. These groups consist either solely of one type,
or they consist of one or a few intermediate type objects that
are surrounded by outermost type objects. Eventually these
groups are broken down and all the objects are at this point
part of one or two larger structures. These structures consist
of a cluster of central type objects that are surrounded by a
band of intermediate objects and then a band of outermost
objects. The two surrounding bands are however somewhat
noisy, and may contain either type of non-central objects.

5. RESULTS DISCUSSION
There are some interesting similarities between the solu-

tions created for clustering, patch sorting, and annular sort-
ing. In all the solutions there is a phase in the beginning
where not much happens. This continues until there is a
random fluctuation in the environment in the form of a for-
mation of a small cluster of one, or two, types of objects.
This random fluctuation is amplified, and the small cluster
grows rapidly. The amplification of random fluctuations is
one of the components of self-organizing systems [4].
There is also another important similarity between the

patch sorting and annular sorting solutions. During the runs
of the solutions the ants focus on one or two of the types
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at a time. In the patch sorting the ants group two of the
object types before beginning to group the third type. The
focus of the ants on only one type of object at a time is even
clearer in the annular sorting solutions. In these the ants
begin by clustering the central type objects, and when these
are clustered the ants begin to pick up objects of the type
that should surround this cluster. After this surrounding
band is formed the ants will turn to the objects belonging
to the next band to be formed. There is thus a clear order
in which the ants deposit the items in the growing struc-
tures. For the annular sorting solutions the reason for this
ordering becomes evident when looking at the different com-
binations of sensory stimuli that cause the ants to deposit
their objects. There are fewer combinations, ie. formations
of objects in the ants’ eight-cell neighborhoods that cause
the ants to deposit the objects on which they focus first.
In addition the perceptional inputs that cause the ants to
deposit these objects are less likely to be encountered in the
beginning of the sort when the objects are mostly scattered.
The reason for the order in which the ants focus on objects
of different types thus appears to be that the objects on
which the ants focus first are harder to ‘get rid of’ than the
objects focused on later in the sorting process. This is also
evident in the patch sort solution where the objects the ants
focus on first are only deposited in areas where there are
other objects of the same type, and at the beginning of the
sort there are no such areas.
At the beginning of a sort the ants will pick up objects of

any type. However, because of the distribution of objects at
this point of the sort the ants are not able to deposit one of
the object types. The ants will therefore carry these objects
around for a long time until they discover a configuration of
objects that allow them to deposit their object. Once the
objects become part of the structure the ants will not pick
them up again. The ants will then move on to carry the
next type of object that is most difficult to deposit. This
process continues until the sort is successful. The different
sorts thus appears to result from the varying difficulties the
ants have with depositing the different types of objects, and
the fact that objects that are part of the growing structures
are rarely picked up by the ants.

6. SUMMARY AND FUTURE WORK
One of the goals of this work has been to keep things as

simple as possible in order to assess the minimum local com-
plexity needed to achieve the global patterns. Because of
this the ants all have very limited sensory capabilities. Fur-
thermore, the objects are discrete valued, meaning that the
ants can only decide if two objects are identical or different,
and not perform any form of similarity measure. The ants
are thus capable of performing complex collective tasks with
simple individual behaviors using only limited information
about the objects in their immediate neighborhood.
A major distinction between this work and previous work

in the field is that most previous work has used rules for
controlling the behavior of the individual agents. The use
of neural networks to control the agents is not a common
approach within this field of research, and neither is the
use of evolution of swarms of agents. We therefore believe
that we are the first to combine the use of neural network
controllers and evolution within this field of research.
There are several ways in which our work can be extended

in the future. We are currently working on a solution to the

three-object annular sorting problem using a purely local
fitness function that resembles the fitness function used to
solve the patch-sorting task. So far the solution evolved pro-
duces one cluster of the central type and a separate cluster
of the two outermost types that is an annular structure. The
networks in the solution can also be improved. One obvious
improvement would be to reduce the number of input nodes
in the networks to always being nine instead of using nine
groups of nodes, each containing the same number of nodes
as there are different types of objects in the environment.
Another improvement would be to create a network where
the number of hidden nodes is not dependent on the number
of types of objects in the world. A first step towards this is
to analyze the function of the hidden nodes in the networks,
and we are currently working on this.
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